

Tip-Tilt-Focus Estimation at PAA for GEO Feeder uplinks aided by Laser Guide Star

Perrine Lognoné^{1,2,*}, Jean-Marc Conan¹, Ghaya Rekaya², Laurie Paillier¹, Aurélie Montmerle-Bonnefois¹ Nicolas Védrenne¹

- 1: ONERA, DOTA, Paris Saclay University, 92322 Châtillon, FRANCE
- 2: Télécom Paris, 91120 Palaiseau, FRANCE
- *: PhD funded by ONERA/CNES

perrine.lognone@onera.fr laurie.paillier@onera.fr

Ш.

Context: High data rate optical ground to GEO links impacted by anisoplanatism

Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence

Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal

Because of link geometry: Point ahead angle (PAA).

Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence

Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal

Because of link geometry: Point ahead angle (PAA).

How to improve information signal reliability over this fading channel ?

Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence

Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal

Because of link geometry: Point ahead angle (PAA).

How to improve information signal reliability over this fading channel ?

→ Improve the coupled flux statistics by optimizing the pre-compensation phase

State of the art

How to optimize the pre-compensation phase at PAA ?

Technique 1: Classical pre-compensation [Tyson-1996]

Shared phase correction with the downlink \rightarrow Full anisoplanatism

11.

State of the art

Ш.

How to optimize the pre-compensation phase at PAA ?

Technique 1: Classical pre-compensation [Tyson-1996] Shared phase correction with the downlink

 \rightarrow Full anisoplanatism

Technique 2: Laser Guide Star [Tyson-1996][Osborn-2021]
Provides Φ measurements at PAA
→ Tip-Tilt Focus indetermination

State of the art

How to optimize the pre-compensation phase at PAA ?

Technique 1: Classical pre-compensation [Tyson-1996] Shared phase correction with the downlink → Full anisoplanatism

Technique 3: Phase estimation at PAA [Lognoné-2023]

Based on on-axis Φ and χ measurements

Ш.

« MMSE »

State of the art

How to optimize the pre-compensation phase at PAA ?

Technique 1: Classical pre-compensation [Tyson-1996] Shared phase correction with the downlink → Full anisoplanatism

Technique 2: Laser Guide Star [Tyson-1996][Osborn-2021]Provides Φ measurements at PAA→ Tip-Tilt Focus indetermination

Technique 3: Phase estimation at PAA [Lognoné-2023]

Based on on-axis Φ and χ measurements

Ш.

38 000km Free space

40km Atmosphere

We propose: To combine 2 and 3 to estimate the uplink tip tilt and focus at PAA by incorporating high order LGS measurements in the phase estimation.

System model

П.

System:

→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

System model

П.

System:

→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

System model

System:

→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

Phase analysis:

 \rightarrow Zernike Modal formalism:

П.

$$\Phi = (a_2, \dots, a_N)$$
 and $\chi = (b_1, \dots, b_N)$

.....

System model

System:

→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

Phase analysis:

 \rightarrow Zernike Modal formalism:

П.

$$\Phi = (a_2, \dots, a_N) \text{ and } \chi = (b_1, \dots, b_N)$$

LGS system assumptions:

- Punctual monostatic LGS
 - Perfect high order measurements

System model

System:

→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

Phase analysis:

 \rightarrow Zernike Modal formalism:

П.

$$\Phi = (a_2, \dots, a_N) \text{ and } \chi = (b_1, \dots, b_N)$$

LGS system assumptions:

- Punctual monostatic LGS
 - Perfect high order measurements

Adaptive optics assumptions:

Error budget : Anisoplanatism and fitting

Benchmark

Systems without LGS:

- Classical case, full anisoplanatism:

$$\Phi_{\text{res,classic}} = \Phi_{\text{PAA}} - \Phi_0$$

- MMSE:

 $\boldsymbol{\Phi}_{\text{res,MMSE}} = \boldsymbol{\Phi}_{\text{PAA}} - \boldsymbol{\Phi}_{\text{MMSE}}$

Benchmark

Systems without LGS:

- Classical case, full anisoplanatism:

$$\boldsymbol{\Phi}_{\text{res,classic}} = \boldsymbol{\Phi}_{\text{PAA}} - \boldsymbol{\Phi}_{0}$$

- MMSE:

$$\boldsymbol{\Phi}_{\text{res,MMSE}} = \boldsymbol{\Phi}_{\text{PAA}} - \boldsymbol{\Phi}_{\text{MMSE}}$$

Systems with LGS:

We suppose perfect measurements on high order modes:

$$\Phi_{res,LGS} = \begin{pmatrix} \Phi_{PAA,TTF} \\ \Phi_{PAA} \end{pmatrix} - \begin{pmatrix} \Phi_{corr,TTF} \\ \Phi_{PAA} \end{pmatrix}$$

Benchmark

Systems without LGS:

- Classical case, full anisoplanatism:

$$\Phi_{\text{res,classic}} = \Phi_{\text{PAA}} - \Phi_0$$

- MMSE:

 $\boldsymbol{\Phi}_{\text{res,MMSE}} = \boldsymbol{\Phi}_{\text{PAA}} - \boldsymbol{\Phi}_{\text{MMSE}}$

Systems with LGS:

We suppose perfect measurements on high order modes:

$$\Phi_{\text{res,LGS}} = \begin{pmatrix} \Phi_{\text{PAA,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix} - \begin{pmatrix} \Phi_{\text{corr,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix}$$

.....

Benchmark

Systems without LGS:

- Classical case, full anisoplanatism:

$$\boldsymbol{\Phi}_{\text{res,classic}} = \boldsymbol{\Phi}_{\text{PAA}} - \boldsymbol{\Phi}_{0}$$

- MMSE:

$$\Phi_{\rm res,MMSE} = \Phi_{\rm PAA} - \Phi_{\rm MMSE}$$

Systems with LGS:

We suppose perfect measurements on high order modes:

$$\Phi_{\text{res,LGS}} = \begin{pmatrix} \Phi_{\text{PAA,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix} - \begin{pmatrix} \Phi_{\text{corr,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix}$$

As we study LGS systems: → Focus on Tip Tilt and Focus analysis

Tip tilt and focus estimation Theoretical phase estimator

11.

Phase error:

$$\mathbf{e} = \mathbf{\Phi}_{\text{res}} = \mathbf{\Phi}_{\text{PAA}} - \widehat{\mathbf{\Phi}}_{\text{PAA}}$$

Linear estimator:

$$\widehat{\mathbf{\Phi}}_{\text{PAA}} = \mathbf{R}\mathbf{y}_{\text{m}}$$

MMSE estimation:

$$\mathbf{R}_{\text{MMSE}} = \min_{\mathbf{R}} \mathbb{E}[(\mathbf{\Phi}_{\text{PAA}} - \mathbf{R}\mathbf{y}_{\text{m}})^{\text{T}}(\mathbf{\Phi}_{\text{PAA}} - \mathbf{R}\mathbf{y}_{\text{m}})]$$
$$= \mathbf{\Gamma}_{\mathbf{\Phi}\mathbf{y}_{\text{m}}}(\alpha)\mathbf{\Gamma}_{\mathbf{y}_{\text{m}}\mathbf{y}_{\text{m}}}(0)^{-1}$$

11.

Reminder: $\mathbf{R}_{MMSE} = \mathbf{\Gamma}_{\Phi y_m}(\alpha) \mathbf{\Gamma}_{y_m y_m}(0)^{-1}$

11.

Reminder: $\mathbf{R}_{MMSE} = \mathbf{\Gamma}_{\Phi y_m}(\alpha) \mathbf{\Gamma}_{y_m y_m}(0)^{-1}$

New method

 \rightarrow Estimate of $\Phi_{PAA,TTF}$

$$\mathbf{y}_{\mathbf{m},\mathbf{LGS}} = \begin{pmatrix} \mathbf{\Phi}_{\mathbf{0}} \\ \mathbf{\chi}_{\mathbf{0}} \\ \mathbf{\Phi}_{\mathbf{PAA},\mathbf{HO}} \end{pmatrix}$$

11.

Reminder: $\mathbf{R}_{MMSE} = \mathbf{\Gamma}_{\Phi y_m}(\alpha) \mathbf{\Gamma}_{y_m y_m}(0)^{-1}$

New method

 \rightarrow Estimate of $\Phi_{PAA,TTF}$

$$\mathbf{y}_{\mathbf{m},\mathbf{LGS}} = \begin{pmatrix} \boldsymbol{\Phi}_{\mathbf{0}} \\ \boldsymbol{\chi}_{\mathbf{0}} \\ \boldsymbol{\Phi}_{\mathbf{PAA},\mathbf{HO}} \end{pmatrix}$$

where Φ_0 , $\Phi_{PAA,HO}$ and χ_0 are vectors of the projections of the physical quantities onto the Zernike polynomial basis, as:

$$\begin{split} \boldsymbol{\Phi_0} &= (a_2^0 \ \dots a_n^0)^T, \boldsymbol{\Phi_{\text{PAA,HO}}} = \left(a_5^{\alpha_{\text{PAA}}} \ \dots a_n^{\alpha_{\text{PAA}}}\right)^T, \\ & \text{and } \boldsymbol{\chi_0} = (b_1^0 \ \dots b_n^0)^T \end{split}$$

Ш.

Reminder: $\mathbf{R}_{MMSE} = \mathbf{\Gamma}_{\Phi y_m}(\alpha) \mathbf{\Gamma}_{y_m y_m}(0)^{-1}$

New method

 \rightarrow Estimate of $\Phi_{PAA,TTF}$

$$\mathbf{y}_{\mathbf{m},\mathbf{LGS}} = \begin{pmatrix} \mathbf{\Phi}_{\mathbf{0}} \\ \mathbf{\chi}_{\mathbf{0}} \\ \mathbf{\Phi}_{\mathbf{PAA},\mathbf{HO}} \end{pmatrix}$$

where Φ_0 , $\Phi_{PAA,HO}$ and χ_0 are vectors of the projections of the physical quantities onto the Zernike polynomial basis, as:

$$\boldsymbol{\Phi_0} = (a_2^0 \dots a_n^0)^T, \boldsymbol{\Phi_{\text{PAA,HO}}} = \left(a_5^{\alpha_{\text{PAA}}} \dots a_n^{\alpha_{\text{PAA}}}\right)^T,$$

and $\boldsymbol{\chi_0} = (b_1^0 \dots b_n^0)^T$

 RÉPUBLIQUE FRANÇAISE
 ONERA
 TELECOM Paris

 Libriti Éguitié Internaté
 The French Aerospace Lab
 TELECOM

Analytical estimator depends on:

- C_n^2 profile
- OGS parameters: D, k_0 , α_{PAA}

IV.

Estimator performances OGS and atmospheric parameters

11.

r ₀ at 1550 nm	4,0 cm
σ_{χ}^2	0,08
θ ₀	6,8 µrad
$(\mathbf{v}_{g}, \mathbf{v}_{t})$	(10, 30) m. s ⁻¹

OGS parameters	
D	60 cm
$\theta_{elevation}$	30°
θ_{PAA}	18,5 µrad
λ	1550 nm
AO parameters	
N _{AO}	136
f _{samp}	4,7 kHz

→ 47000 E2E samples generated

We thank James Osborn (Centre for Advanced Instrumentation, Durham University) for kindly providing the turbulence profile data base described in [Osborn-2018]

IV. Discussion

Estimator performances Gain on Tip Tilt and Focus residual phase variance

11.

Estimator performances Gain on Tip Tilt and Focus residual phase variance

Ш.

We observe:

 \rightarrow Tip reduced by **70%**, tilt by **50%**, focus by **80%** with respect to the classical case.

IV.

Estimator performances Gain on Tip Tilt and Focus residual phase variance

Ш.

We observe:

 \rightarrow Tip reduced by **70%**, tilt by **50%**, focus by **80%** with respect to the classical case.

Adding LGS high order measurements brings information and therefore improves the estimation.

Estimator performances Coupled flux statistics

Ш.

	Gain with respect to the classical case at $P(f \le F_t) = 10^{-3}$
$MMSE_{\Phi\chi}$	13 dB
LGS TTF Classic	
LGS TTF $MMSE_{\Phi\chi,LGS}$	

Estimator performances Coupled flux statistics

Ш.

	Gain with respect to the classical case at $P(f \le F_t) = 10^{-3}$
$MMSE_{\Phi\chi}$	13 dB
LGS TTF Classic	5 dB
LGS TTF $MMSE_{\Phi\chi,LGS}$	

Estimator performances Coupled flux statistics

11.

	Gain with respect to the classical case at $P(f \le F_t) = 10^{-3}$
$MMSE_{\Phi\chi}$	13 dB
LGS TTF Classic	5 dB
LGS TTF $MMSE_{\Phi\chi,LGS}$	19 dB

IV.

Estimator performances Coupled flux statistics

11.

	Gain with respect to the classical case at $P(f \le F_t) = 10^{-3}$
$MMSE_{\Phi\chi}$	13 dB
LGS TTF Classic	5 dB
LGS TTF $MMSE_{\Phi\chi,LGS}$	19 dB

- 1) MMSE $_{\Phi\chi}$ performs better than LGS with Tip tilt focus classic
- 2) For LGS systems: better performance using LGS phase high orders in the estimation

Coupled flux threshold F_{t} (dB)

IV.

Estimator performances Coupled flux statistics

Ш.

	Gain with respect to the classical case at $P(f \le F_t) = 10^{-3}$
$MMSE_{\Phi\chi}$	13 dB
LGS TTF Classic	5 dB
LGS TTF $MMSE_{\Phi\chi,LGS}$	19 dB

- 1) MMSE $_{\Phi\chi}$ performs better than LGS with Tip tilt focus classic
- 2) For LGS systems: better performance using LGS phase high orders in the estimation

This estimation method reduces the occurrence of deep fades: → Relax constraints on the link budget.

Estimator performances Temporal statistics

11.

IV.

Estimator performances Temporal statistics

11.

We observe:

- Fading depth and duration reduced with respect to every other methods

Estimator performances Temporal statistics

Ш.

We observe:

- Fading depth and duration reduced with respect to every other methods

→ Reduce the link latency and satellite system complexity.

Conclusion and perspectives

- We derived a new analytical estimator relying on on-axis phase and log-amplitude and laser guide star high order measurements.
- Laser guide star high order measurements bring information to the estimation and therefore further **decrease the tip tilt and focus residual phase variance**.
- This has the consequence to highly improve the statistics and temporal characteristics of the coupled flux aboard the satellite:
 - → Relax link budget constraints
 - → Relax constraints on interleavers duration : decreased latency and system complexity aboard the satellite.

Perspectives

- Idealized LGS: this is the upper limit of the performance we can get
 - → Need to study a more realistic LGS system (width of the source, noise, lack of stabilization)
- Toward implementation:
 - \rightarrow Cn2 profile reconstruction to ensure the estimator robustness.

FEELINGS Ground Station

- D = 60 cm robotised telescope (20 cm subaperture option for uplink)
- Compatible with TELEO payload
- GEO and LEO tracking ability
- Compatible with phase and amplitude modulation
- AO (FELIN): 17x17 SH, 4.7kHz, Alpao DM292 + fast TT mirror
- ONERA's RTC (developped by Shakti)
- OS : Laboratory based (LV + IDL), scripts, not automated
- In house high power amplifier
- Weather station, Integral Sky Monitor, Miratlas
- In-house automated post-processing of the experimental data

Thank you for your attention !

[Tyson-1996] Robert K. Tyson, "Adaptive optics and ground-to-space laser communications," Appl. Opt. 35, 3640-3646 (1996)

[Osborn-2021] James Osborn, Matthew J. Townson, Ollie J. D. Farley, Andrew Reeves, and Ramon Mata Calvo, "Adaptive Optics pre-compensated laser uplink to LEO and GEO," Opt. Express 29, 6113-6132 (2021)

[Lognoné-2023] Perrine Lognoné, Jean-Marc Conan, Ghaya Rekaya, and Nicolas Védrenne, "Phase estimation at the point-ahead angle for AO pre-compensated ground to GEO satellite telecoms," Opt. Express 31, 3441-3458 (2023)

[Osborn-2018] J. Osborn, R. W. Wilson, M. Sarazin, T. Butterley, A. Chacón, F. Derie, O. J. D. Farley, X. Haubois, D. Laidlaw, M. LeLouarn, E. Masciadri, J. Milli, J. Navarrete, and M. J. Townson, "Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT," Mon. Not. R. Astron. Soc. 478(1), 825–834 (2018).

