Tip-Tilt-Focus Estimation at PAA for GEO Feeder uplinks aided by Laser Guide Star

Perrine Lognoné1,2,*, Jean-Marc Conan1, Ghaya Rekaya2, Laurie Paillier1, Aurélie Montmerle-Bonnefois1 Nicolas Védrenne1

1: ONERA, DOTA, Paris Saclay University, 92322 Châtillon, FRANCE
2: Télécom Paris, 91120 Palaiseau, FRANCE
*: PhD funded by ONERA/CNES

perrine.lognone@onera.fr
laurie.paillier@onera.fr
Introduction

Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence
Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal
Because of link geometry: Point ahead angle (PAA).
Introduction
Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence
Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal
Because of link geometry: Point ahead angle (PAA).
Introduction
Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence
Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal
Because of link geometry: Point ahead angle (PAA).

How to improve information signal reliability over this fading channel?
Introduction
Context: High data rate optical ground to GEO links impacted by anisoplanatism

Main issue: atmospheric turbulence
Random fluctuation of coupling efficiency.

Solution: Adaptive Optics (AO)

Uplink correction: not optimal
Because of link geometry: Point ahead angle (PAA).

How to improve information signal reliability over this fading channel?

→ Improve the coupled flux statistics by optimizing the pre-compensation phase
State of the art
How to optimize the pre-compensation phase at PAA?

Technique 1: Classical pre-compensation [Tyson-1996]
Shared phase correction with the downlink
→ Full anisoplanatism
State of the art
How to optimize the pre-compensation phase at PAA?

Technique 1: Classical pre-compensation [Tyson-1996]
Shared phase correction with the downlink
→ Full anisoplanatism

Technique 2: Laser Guide Star [Tyson-1996][Osborn-2021]
Provides Φ measurements at PAA
→ Tip-Tilt Focus indetermination
State of the art
How to optimize the pre-compensation phase at PAA?

Technique 1: Classical pre-compensation [Tyson-1996]
Shared phase correction with the downlink
→ Full anisoplanatism

Technique 2: Laser Guide Star [Tyson-1996][Osborn-2021]
Provides \(\Phi \) measurements at PAA
→ Tip-Tilt Focus indetermination

Technique 3: Phase estimation at PAA [Lognoné-2023]
Based on on-axis \(\Phi \) and \(\chi \) measurements

\(\Psi(\alpha = \alpha_{\text{PAA}}) \) \hspace{2cm} \(\Psi(\alpha = 0) \)

\(\alpha_{\text{PAA}} \)
State of the art
How to optimize the pre-compensation phase at PAA?

Technique 1: Classical pre-compensation [Tyson-1996]
Shared phase correction with the downlink
→ Full anisoplanatism

Technique 2: Laser Guide Star [Tyson-1996][Osborn-2021]
Provides Φ measurements at PAA
→ Tip-Tilt Focus indetermination

Technique 3: Phase estimation at PAA [Lognoné-2023]
Based on on-axis Φ and χ measurements

We propose:
To combine 2 and 3 to estimate the uplink tip tilt and focus at PAA by incorporating high order LGS measurements in the phase estimation.
System model

System:
→ Reciprocal approach to compute the phase error and the reciprocal coupled flux
System model

System:

→ Reciprocal approach to compute the phase error and the reciprocal coupled flux
System model

System:
- Reciprocal approach to compute the phase error and the reciprocal coupled flux

Phase analysis:
- Zernike Modal formalism:
 \[\Phi = (a_2, ..., a_N) \text{ and } \chi = (b_1, ..., b_N) \]
System model

System:
→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

Phase analysis:
→ Zernike Modal formalism:
 \[\Phi = (a_2, \ldots, a_N) \text{ and } \chi = (b_1, \ldots, b_N) \]

LGS system assumptions:
- Punctual monostatic LGS
 - Perfect high order measurements
System model

System:
→ Reciprocal approach to compute the phase error and the reciprocal coupled flux

Phase analysis:
→ Zernike Modal formalism:
 \[\Phi = (a_2, \ldots, a_N) \text{ and } \chi = (b_1, \ldots, b_N) \]

LGS system assumptions:
- Punctual monostatic LGS
 ➢ Perfect high order measurements

Adaptive optics assumptions:
Error budget: Anisoplanatism and fitting
Benchmark

Systems without LGS:
- Classical case, full anisoplanatism:
 \[\Phi_{\text{res, classic}} = \Phi_{\text{PAA}} - \Phi_0 \]
- MMSE:
 \[\Phi_{\text{res, MMSE}} = \Phi_{\text{PAA}} - \Phi_{\text{MMSE}} \]
Benchmark

Systems without LGS:
- Classical case, full anisoplanatism:
 \[\Phi_{\text{res, classic}} = \Phi_{\text{PAA}} - \Phi_0 \]
- MMSE:
 \[\Phi_{\text{res, MMSE}} = \Phi_{\text{PAA}} - \Phi_{\text{MMSE}} \]

Systems with LGS:
We suppose perfect measurements on high order modes:

\[\Phi_{\text{res, LGS}} = \left(\begin{array}{c} \Phi_{\text{PAA, TTF}} \\ \Phi_{\text{PAA}} \end{array} \right) - \left(\begin{array}{c} \Phi_{\text{corr, TTF}} \\ \Phi_{\text{PAA}} \end{array} \right) \]
Benchmark

Systems without LGS:
- Classical case, full anisoplanatism:
 \[\Phi_{\text{res,classic}} = \Phi_{\text{PAA}} - \Phi_0 \]
- MMSE:
 \[\Phi_{\text{res,MMSE}} = \Phi_{\text{PAA}} - \Phi_{\text{MMSE}} \]

Systems with LGS:
We suppose perfect measurements on high order modes:

\[\Phi_{\text{res,LGS}} = \begin{pmatrix} \Phi_{\text{PAA,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix} - \begin{pmatrix} \Phi_{\text{corr,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix} \]
Benchmark

Systems without LGS:
- Classical case, full anisoplanatism:
 \[\Phi_{\text{res,classic}} = \Phi_{\text{PAA}} - \Phi_0 \]
- MMSE:
 \[\Phi_{\text{res,MMSE}} = \Phi_{\text{PAA}} - \Phi_{\text{MMSE}} \]

Systems with LGS:
We suppose perfect measurements on high order modes:
\[\Phi_{\text{res,LGS}} = \begin{pmatrix} \Phi_{\text{PAA,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix} - \begin{pmatrix} \Phi_{\text{corr,TTF}} \\ \Phi_{\text{PAA}} \end{pmatrix} \]

As we study LGS systems:
→ Focus on Tip Tilt and Focus analysis
Tip tilt and focus estimation
Theoretical phase estimator

Phase error:

\[e = \Phi_{\text{res}} = \Phi_{\text{PAA}} - \hat{\Phi}_{\text{PAA}} \]

Linear estimator:

\[\hat{\Phi}_{\text{PAA}} = R y_m \]

MMSE estimation:

\[
R_{\text{MMSE}} = \min_{R} \mathbb{E} \left[(\Phi_{\text{PAA}} - R y_m)^T (\Phi_{\text{PAA}} - R y_m) \right]
= \Gamma_{\Phi y_m(\alpha)} \Gamma_{y_m y_m(0)}^{-1}
\]
Tip tilt and focus estimation
Specification of the measurement vector

Reminder: \(\mathbf{R}_{MMSE} = \Gamma_{\Phi} \gamma_m(\alpha) \Gamma_{\gamma_m\gamma_m}(0)^{-1} \)
Tip tilt and focus estimation
Specification of the measurement vector

Reminder: \(R_{MMSE} = \Gamma_{\Phi y_m}(\alpha)\Gamma_{y_m y_m}(0)^{-1} \)

New method
\(\rightarrow \) Estimate of \(\Phi_{PAA,TTF} \)

\(y_{m,LGS} = \begin{pmatrix} \Phi_0 \\ \chi_0 \\ \Phi_{PAA,HO} \end{pmatrix} \)
Tip tilt and focus estimation

Specification of the measurement vector

Reminder: $R_{MMSE} = \Gamma \Phi y_m(\alpha) \Gamma y_m y_m(0)^{-1}$

New method

\to Estimate of $\Phi_{PAA,TTF}$

$$y_{m,LGS} = \begin{pmatrix} \Phi_0 \\ \chi_0 \\ \Phi_{PAA,HO} \end{pmatrix}$$

where Φ_0, $\Phi_{PAA,HO}$ and χ_0 are vectors of the projections of the physical quantities onto the Zernike polynomial basis, as:

$$\Phi_0 = (a_2^0 ... a_n^0)^T, \Phi_{PAA,HO} = (a_5^{\alpha_{PAA}} ... a_n^{\alpha_{PAA}})^T,$$

and $\chi_0 = (b_1^0 ... b_n^0)^T$
Tip tilt and focus estimation
Specification of the measurement vector

Reminder: \(R_{MMSE} = \Gamma \Phi y_m(\alpha) \Gamma y_m(0)^{-1} \)

New method
\(\rightarrow \) Estimate of \(\Phi_{PAA,TTF} \)

\[
y_{m,LGS} = \begin{pmatrix} \Phi_0 \\ \chi_0 \\ \Phi_{PAA,HO} \end{pmatrix}
\]

where \(\Phi_0, \Phi_{PAA,HO} \) and \(\chi_0 \) are vectors of the projections of the physical quantities onto the Zernike polynomial basis, as:

\[
\Phi_0 = (a_2^0 ... a_n^0)^T, \quad \Phi_{PAA,HO} = (a_5^{\alpha_{PAA}} ... a_n^{\alpha_{PAA}})^T
\]

and \(\chi_0 = (b_1^0 ... b_n^0)^T \)

Analytical estimator depends on:
- \(C_n^2 \) profile
- OGS parameters: \(D, k_0, \alpha_{PAA} \)
Estimator performances
OGS and atmospheric parameters

\[r_0 \text{ at } 1550 \text{ nm} \] 4,0 cm
\[\sigma^2 \chi \] 0,08
\[\theta_0 \] 6,8 µrad
\[(v_g, v_t) \] (10, 30) m.s\(^{-1}\)

\[C_2 \text{ m}^{-2/3} \] vs. Height (km)

OGS parameters
- D 60 cm
- \(\theta_{\text{elevation}} \) 30°
- \(\theta_{\text{PAA}} \) 18,5 µrad
- \(\lambda \) 1550 nm

AO parameters
- \(N_{\text{AO}} \) 136
- \(f_{\text{samp}} \) 4,7 kHz

\[\rightarrow 47000 \text{ E2E samples generated} \]
Estimator performances
Gain on Tip Tilt and Focus residual phase variance

\[\sigma^2(\Phi_{\text{res, } i}) \text{ (rad}^2) \]

- **Classic**
- **MMSE_{\Phi_x}**

I. Introduction
II. System and benchmark
III. Tip tilt and focus estimation
IV. Estimator performance
IV. Discussion
Estimator performances
Gain on Tip Tilt and Focus residual phase variance

We observe:
→ Tip reduced by 70%, tilt by 50%, focus by 80% with respect to the classical case.

\[
\begin{align*}
\sigma_{TTF,\text{classic}}^2 &= 0.53 \text{ rad}^2 \\
\sigma_{TTF,\text{MMSE}_{\Phi \chi}}^2 &= 0.29 \text{ rad}^2 \\
\sigma_{TTF,\text{MMSE}_{\Phi \chi,LGS}}^2 &= 0.19 \text{ rad}^2
\end{align*}
\]
Estimator performances
Gain on Tip Tilt and Focus residual phase variance

We observe:
→ Tip reduced by 70%, tilt by 50%, focus by 80% with respect to the classical case.

Adding LGS high order measurements brings information and therefore improves the estimation.

\[
\begin{align*}
\sigma_{\text{TTF, classic}}^2 &= 0.53 \text{ rad}^2 \\
\sigma_{\text{TTF, MMSE}_{\Phi \chi}}^2 &= 0.29 \text{ rad}^2 \\
\sigma_{\text{TTF, MMSE}_{\Phi \chi, LGS}}^2 &= 0.19 \text{ rad}^2
\end{align*}
\]
Estimator performances
Coupled flux statistics

Gain with respect to the classical case at $P(f \leq F_t) = 10^{-3}$

- **MMSEΦ_X**: 13 dB
- **LGS TTF Classic**
- **LGS TTF MMSEΦ_X, LGS**

![Graph showing coupled flux threshold F_t vs. probability $P(f \leq F_t)$]
Estimator performances
Coupled flux statistics

<table>
<thead>
<tr>
<th></th>
<th>Gain with respect to the classical case at $P(f \leq F_t) = 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MMSE_{\phi_\chi}$</td>
<td>13 dB</td>
</tr>
<tr>
<td>LGS TTF Classic</td>
<td>5 dB</td>
</tr>
<tr>
<td>LGS TTF $MMSE_{\phi_\chi, LGS}$</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing coupled flux threshold F_t (dB)](image)

- Classic (No LGS)
- $MMSE_{\phi_\chi}$ (No LGS)
- LGS, TTF classic
I. Introduction

II. System and benchmark

III. Tip tilt and focus estimation

IV. Estimator performance

IV. Discussion

Estimator performances
Coupled flux statistics

<table>
<thead>
<tr>
<th>Method</th>
<th>Gain with respect to the classical case at $P(f \leq F_t) = 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MMSE_{\Phi X}$</td>
<td>13 dB</td>
</tr>
<tr>
<td>LGS TTF Classic</td>
<td>5 dB</td>
</tr>
<tr>
<td>LGS TTF $MMSE_{\Phi X, LGS}$</td>
<td>19 dB</td>
</tr>
</tbody>
</table>

![Graph showing coupled flux statistics for different methods]
Estimator performances

Coupled flux statistics

<table>
<thead>
<tr>
<th></th>
<th>Gain with respect to the classical case at $P(f \leq F_t) = 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{MMSE}_{\Phi \chi}$</td>
<td>13 dB</td>
</tr>
<tr>
<td>LGS TTF Classic</td>
<td>5 dB</td>
</tr>
<tr>
<td>LGS TTF $\text{MMSE}_{\Phi \chi, LGS}$</td>
<td>19 dB</td>
</tr>
</tbody>
</table>

1) $\text{MMSE}_{\Phi \chi}$ performs better than LGS with Tip tilt focus classic

2) **For LGS systems**: better performance using LGS phase high orders in the estimation
Estimator performances

Coupled flux statistics

Gain with respect to the classical case at \(P(f \leq F_t) = 10^{-3} \)

<table>
<thead>
<tr>
<th>Method</th>
<th>Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE_{\phi_X}</td>
<td>13</td>
</tr>
<tr>
<td>LGS TTF Classic</td>
<td>5</td>
</tr>
<tr>
<td>LGS TTF MMSE_{\phi_X,LGS}</td>
<td>19</td>
</tr>
</tbody>
</table>

1) \(\text{MMSE}_{\phi_X} \) performs better than LGS with Tip tilt focus classic

2) For LGS systems: better performance using LGS phase high orders in the estimation

This estimation method reduces the occurrence of deep fades: \(\Rightarrow \) Relax constraints on the link budget.
Estimator performances
Temporal statistics

![Graph showing coupled flux over time with different estimators]
Estimator performances
Temporal statistics

We observe:
- Fading depth and duration reduced with respect to every other methods
We observe:
- Fading depth and duration reduced with respect to every other methods

⇒ Reduce the link latency and satellite system complexity.
Conclusion and perspectives

- We derived a new **analytical estimator** relying on **on-axis phase and log-amplitude** and **laser guide star high order measurements**.

- Laser guide star high order measurements bring information to the estimation and therefore further **decrease the tip tilt and focus residual phase variance**.

- This has the consequence to highly improve the statistics and temporal characteristics of the coupled flux aboard the satellite:
 - Relax **link budget constraints**
 - Relax constraints on **interleavers duration** : decreased latency and system complexity aboard the satellite.

Perspectives

- **Idealized LGS**: this is the upper limit of the performance we can get
 - Need to study a more realistic LGS system (width of the source, noise, lack of stabilization)

- **Toward implementation**:
 - Cn2 profile reconstruction to ensure the estimator robustness.
FEELINGS Ground Station

- $D = 60$ cm robotised telescope (20 cm subaperture option for uplink)
- Compatible with TELEO payload
- GEO and LEO tracking ability
- Compatible with phase and amplitude modulation
- AO (FELIN): 17x17 SH, 4.7kHz, Alpao DM292 + fast TT mirror
- ONERA’s RTC (developed by Shakti)
- OS: Laboratory based (LV + IDL), scripts, not automated
- In-house high power amplifier
- Weather station, Integral Sky Monitor, Miratlas
- In-house automated post-processing of the experimental data
Thank you for your attention!

