http://web.science.mq.edu.au/groups/diamond/

L4AO-14 Workshop, Marseille 2023

Progress in diamond Raman lasers for sodium beacon applications

Rich Mildren*

Richard Pahlavani, Hadiya Jasbeer, Adam Sharp, David Spence

*MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney Australia

rich.mildren@mq.edu.au

FOR

ED STATES

Contents

- 1. Intro to diamond Raman lasers what are they?
- 2. Single frequency operation
- 3. 589 nm and 330 nm
- 4. Conclusion / Future directions

Inversion lasers vs Raman lasers

Raman materials

Some standout materials:

	Plusses +	Minuses -
Glasses (SiO ₂ , GeO, P ₂ O ₅)	Low cost fibers, high damage threshold, transparency	Low g and ω_{v} high parasitic nonlinearities in fiber form
Metal-WO ₄ , YVO ₄ , Metal-MoO ₄ , etc.	High gain, moderate damage threshold, good transparency	Waveguiding is challenging Complex Raman spectra Poor heat handling
Diamond, silicon	High gain, excellent thermals Simple Raman spectra	Diamond – immature fabrication Si – high parasitic nonlinearities

Diamond Raman lasers

'Laser grade' material

H. Jasbeer, R. Williams, O. Kitzler, A. McKay, S. Sarang R. Mildren, JOSAB, 33 p56, (2016)

Diamond Raman laser research directions

Enforcing a single frequency in Raman Lasers

SLM Methods:

[1] Lei S. Meng, Peter A. Roos, and John L. Carlsten, "Continuous-wave rotational Raman laser in H₂," Opt. Lett. 27, 1226-1228 (2002)
[2] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous wave Raman silicon laser," Nature 433(7027), 725 (2005).
[3] Jindan Shi, Shaif-ul Alam, and Morten Ibsen, "Highly efficient Raman distributed feedback fibre lasers," Opt. Express 20, 5082-5091 (2012).
[4] C. Y. Lee, C. C. Chang, et al., "Cryogenically monolithic self-Raman lasers: observation of single-longitudinal-mode operation," Opt. Lett. 40, 1996-1999 (2015).
[5] Z. Liu, S. Men, et al., "Single-frequency Nd:GGG/BaWO4 Raman laser emitting at 1178.3 nm," In CLEO: Science and Innovations, pp. SM3M–3 (2016).
[6] S. M. Spuler and S. D.Mayor, "Raman shifter optimized for lidar at a 1.5 m wavelength," Applied optics 46(15), 2990 (2007).
[7] Y Feng, Taylor, D. Bonaccini Calia, Optics Express vol. 17, 23678, (2009)

Spatial hole burning

Inversion lasers: Spatial hole burning destabilizes single frequency output:

....complicates design (ring cavities, etalons, gain medium near mirror, etc)

Single frequency operation in diamond

Simple standing wave cavity

- Up to a few watts
- Eg. at 1240 nm

Lux et al, Optica, vol. 3, 876, (2016)

- Much higher power
- 30 W SLM
- Visible output (620 nm)

Jasbeer, et al, Opt. Express **26**, 1930 (2018) Yang, et al Opt. Lett. (2019)

Additional mode competition via intracavity $\chi^{(2)}$:

Targeting 589 nm

Using a Yb³⁺-doped 1018 nm fiber laser pump:

Features:

- Builds on Yb fiber technology
- Tunable from 588 620 nm
- Extend to the UV
- X. Yang et al, Opt. Lett. 45, 1898. (2000); Opt. Express. 29(18), 29449 (2021)

Locking and linewidth

330 nm laser (polychromatic guide stars)

- Design avoids high power isolator
- 25 W so far, mode is unstable

Power limit - The SBS Problem

1. Stimulated Brillouin scattering (SBS)

- 2. Since $g_{B} > g_{R}$ (generally), the Brillouin gain dominates
- 3. Brillouin lasing spoils efficiency and degrades spectrum

Summary

1. Diamond Raman lasers

- Generic high power laser technology with large λ reach
- Single frequency (if you do it right)
- SBS mitigations are different from Raman fibers

2. Current status

- 22 W single frequency 589 nm
- 25 W at 607 nm (first stage to 330 nm)
- Locking has been achieved recently

3. Current projects

- Aiming for 100 W at 589 nm
- 10 W at 330 nm
- (Pulsed guidestars for pulse tracking)

