ALASCA simulations in PASSATA: geometrical versus physical optics propagation

Bernadett Stadler, Noelia Martinez Rey, Guido Agapito, Domenico Bonaccini Calia bernadett.stadler@indmath.uni-linz.ac.at

L4AO Workshop, Marseille

June 23rd, 2023

Advanced Laser guide star Adaptive optics for Satellite Communication Assessments (ALASCA)

Design and implementation of an OFL system for ESAs optical ground station in Tenerife $\to 1 \rm m$ telescope pupil with 35% central obstruction

Advanced Laser guide star Adaptive optics for Satellite Communication Assessments (ALASCA)

Design and implementation of an OFL system for ESAs optical ground station in Tenerife $\to 1 \rm m$ telescope pupil with 35% central obstruction

- Based on the CaNaPY project: Demonstrator for LGS-AO at visible wavelength
- LGS-AO for 24/7 operation time
- Uplink laser beam pre-compensation to have a smaller spot
- Pyramid LGS-AO closed loop

- LGS: 589nm wavelength, 90km height, on axis, for high order correction
- Satellite:
 - Uplink: 1075nm wavelength, 38000km height, on-axis
 - Downlink: 1064nm wavelength, 38000km height, 4" off-axis, for TT correction

- LGS: 589nm wavelength, 90km height, on axis, for high order correction
- Satellite:
 - Uplink: 1075nm wavelength, 38000km height, on-axis
 - Downlink: 1064nm wavelength, 38000km height, 4" off-axis, for TT correction

Launch configuration:

- Launch of a donut shaped (axicon) beam from the full 1m OGS aperture
- 2 Launch from a 30cm sub-pupil of the OGS allowing an unobstructed Gaussian launch beam

Axicon launch (left) and sub-pupil launch (right).

Light propagation

- Optical field is propagated from layer to layer
- Geometrical optics: particle nature of light
- Physical optics: wave nature of light

 ¹R. M. Clare et. al. "Modeling low order aberrations in laser guide star adaptive optics systems", Opt. Express 15 (2017).
 ²R. Holzlöhner et. al. "Physical optics modeling and optimization of laser guide star propagation", Proc. Adaptive Optics Systems (2008).
 JYU JOHANNES KEPLER
 3 / 12

3 / 12

Light propagation

- Optical field is propagated from layer to layer
- Geometrical optics: particle nature of light
- Physical optics: wave nature of light
- Most AO simulation tools use geometrical optics
- LGS aberrations studied using geometrical optics¹
- Diffraction effects are significant for LGS light propagation² \rightarrow physical optics
- Physical optics propagation takes scintillation into account

¹R. M. Clare et. al. "Modeling low order aberrations in laser guide star adaptive optics systems", Opt. Express 15 (2017). "Physical optics modeling and optimization of laser guide star propagation", Proc. Adaptive Optics Systems (2008).

... describes how an optical field U(x, y, z) is propagated from one layer to another.

... describes how an optical field U(x,y,z) is propagated from one layer to another.

• Optical field is decomposed in plane waves using the 2D FT

$$U(x,y,0) = \mathcal{F}^{-1}(\mathcal{F}(U(x,y,0)))(x,y)$$

with spatial frequencies (k_x,k_y)

... describes how an optical field U(x,y,z) is propagated from one layer to another.

Optical field is decomposed in plane waves using the 2D FT

U(x, y, 0) = F⁻¹(F(U(x, y, 0)))(x, y)
with spatial frequencies (k_x, k_y)

The plane waves are propagated over a distance z

U(x, y, z) = F⁻¹(F(U(x, y, 0)) exp(ik_zz))(x, y)

with
$$k_z=\sqrt{k^2-k_x^2-k_y^2},~k=rac{2\pi}{\lambda}$$

... describes how an optical field U(x,y,z) is propagated from one layer to another.

• Optical field is decomposed in plane waves using the 2D FT

$$U(x, y, 0) = \mathcal{F}^{-1}(\mathcal{F}(U(x, y, 0)))(x, y)$$

with spatial frequencies (k_x, k_y)

ullet The plane waves are propagated over a distance z

 $U(x, y, z) = \mathcal{F}^{-1}(\mathcal{F}(U(x, y, 0)) \exp(ik_z z))(x, y)$

with
$$k_z=\sqrt{k^2-k_x^2-k_y^2},\;k=rac{2\pi}{\lambda}$$

• Fresnel approximation: propagator $\exp(\frac{ik(x^2+y^2)}{z})$

PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA)³ is an IDL and CUDA based library/software capable of doing Monte-Carlo end-to-end Adaptive Optics (AO) simulations.

- \rightarrow Originally only geometrical optics propagation implemented
- ightarrow Added Angular Spectrum Propagation method in the framework of the ALASCA project

³G. Agapito et. al. "PASSATA: object oriented numerical simulation software for adaptive optics ", Proc. Adaptive Optics Systems V (2016). ⁴G. Agapito et. al. "Advances in control of a Pyramid Single Conjugate Adaptive Optics system", Oxford University Press, Volume 508 (2021).

PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA)³ is an IDL and CUDA based library/software capable of doing Monte-Carlo end-to-end Adaptive Optics (AO) simulations.

- 2 Pyramid WFSs: 40×40 pixels, $0\lambda/D$ modulation (LGS + downlink)
- Deformable mirror: 57 KL modes, ALPAO 97 measured influence functions
- Cn2 profile: Measured (full 1m pupil) and synthetic (sub-pupil) by Durham Univ.
- Laser launch configuration: Axicon or sub-pupil
- Seeing conditions: $0.7",\ 1.0"$ and 2.5"
- AO loop: Modal integrator with automatic gain optimization⁴ 2 frames delay, 1kHz (0.7" seeing) or 2kHz (1.0", 2.5" seeing)

 ³G. Agapito et. al. "PASSATA: object oriented numerical simulation software for adaptive optics ", Proc. Adaptive Optics Systems V (2016).
 ⁴G. Agapito et. al. "Advances in control of a Pyramid Single Conjugate Adaptive Optics system", Oxford University Press, Volume 508 (2021).

PASSATA simulations: Axicon launch, nighttime

JOHANNES KEPLER

PASSATA simulations: Axicon launch, nighttime

JOHANNES KEPLER

PASSATA simulations: Axicon launch, daytime

	Geometrical propagation		Physical propagation	
	full AO	TT only	full AO	TT only
Long exposure Strehl ratio	19.746	1.497	28.883	2.766
FWHM [μ rad]	0.248	2.446	0.264	1.487
Power loss 3σ width [dB]	23.223	36.888	20.212	34.162
Minimum flux [μ W/m 2]	0.0144	0.0019	0.522	0.0007
Laser power [W] to reach 1.5 μ W/m 2	104.074	770.8826	2.874	2207.095

Plots computed with the last 1000 iterations of the 5000 iterations AO loop with modal optimization.

PASSATA simulations: Sub-pupil launch, nighttime

5.933

3.384

0.443

Power loss 3σ width [dB]

Laser power [W] to reach 1.5μ W/m²

U JOHANNES KEPLER

Minimum flux $[\mu W/m^2]$

10.0	Geometrical propagation	т	Physical propaga	tion				
10	Full AO correction TT correction only	10'	ull AO correction T correction only	<u>.</u>	Pai	ameter	Value	
'n		£.	_		D	iameter	30cm	
densit		den si			Central o	obstruc.	no	
ility 5		ility				Launch	Sub-pupil	
Probat	A DATA STREET, SAN AND A DATA STREET, SAN	40 10 ⁻²				Seeing	0.7"	
10.2	, and the second second				Fra	me rate	1kHz	
10		10-3	-69 -68 -67 -66 -	65 - 64 - 63 - 62	Simul. c	uration	1s	
	-76 -74 -72 -70 -68 -66 -64 -70 -09 -00 -05 -06 -05 -02 - Power Loss (d8) Power Loss (d8)							
		Geometrical	propagation	Physical p	ropagation			
		full AO	TT only	full AO	TT only	No autom	natic modal gain	
	Long exposure Strehl ratio	77.239	60.235	79.898	66.627	optimizat	ion. Gains	
	FWHM [μ rad]	1.196	1.345	1.001	1.041	optimized	by hand.	

13.656

1.732

1.463

5.143

9.141

0.642

6.522

5.461

0.865

PASSATA simulations: Sub-pupil launch, nighttime

JOHANNES KEPLER

Value

30cm

no

Sub-pupil

2.5"

2kHz

0.5s

PASSATA simulations: Sub-pupil launch, daytime

30.797

0.0003

4946.75

5.838

5.591

0.268

24.788

0.217

74.090

6.955

4.3333

0.346

Νo	autom	atic	modal	gain
opt	imizati	on.	Gains	
opt	imized	by	hand.	

Laser power [W] to reach $1.5 \mu W/m^2$

Power loss 3σ width [dB]

Minimum flux $[\mu W/m^2]$

- Simulations in PASSATA showed that the ALASCA requirements can only be met with AO.
- **Sub-pupil launch**: Using LGS-AO the ALASCA requirements on the 3σ width and the minimum flux are met for all test cases studied.
- Axicon launch: The 3σ distribution width is larger and the requirement that it is below 10dB can only be fulfilled in the 0.7" seeing case.
- Zero padding and apodization improved the results for physical optics propagation.
- Using physical optics propagation provided better results than geometrical optics propagation.

Thank you!

This research has received funding by the Austrian Research Promotion Agency (FFG) F0999888133 (Industrial methods for Adaptive Optics control systems).

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Österreich jku.at

• We take the central value of the short exposure PSF from PASSATA $\begin{bmatrix} W \\ pixel \end{bmatrix}$.

2 Spacing at the satellite:
$$dxSat = \frac{wavelength \cdot propDist}{imWidth \cdot pixelPitch} \left[\frac{m}{pixel}\right]$$

Flux at the satellite:

$$\mathsf{flux} = \frac{\mathsf{psf}}{\mathsf{dxSat}^2} \left[\frac{\mathsf{W}}{\mathsf{m}^2} \right]$$

Over at the satellite: power = flux · areaReceiver = fluxSat · $\pi \cdot (\frac{15}{2} \text{cm})^2$ [W]

