## > MANUFACTURING AND INTEGRATION STATUS OF THE ELT LASER PROJECTION SYSTEM

Fred Kamphues, Max Baeten

L4AO – Marseille 22 June 2023



## **ELT LPS CONTRACT SCOPE**

#### > 9 Laser Projection Systems

- > 3x VLTI (Gravity+)
- > 6x ELT

#### Consortium:

- > TNO: System design, integration & verification testing
- > Demcon: BCDS, electronics, cabling



**DEMCON** \_ TNO innovation for life

## **VLT HERITAGE**

#### Optical Tube Assemblies (OTA) for VLT 4LGSF (delivered in 2012)

- > 20x Gallilean beam expander with 15mm input, 300mm steerable output
- > 380mm aspherical L2
- > Fully a-thermalized optomechanical design
- > See also Proc. of SPIE Vol. 8447 84474N-2

| Parameter                                         | Requirement    | Achieved        |
|---------------------------------------------------|----------------|-----------------|
| Transmitted wavefront error (excl focus and tilt) | < 50 nm rms    | 17-23 nm rms    |
| Thermally induced defocus                         | < 0.2 waves PV | ~ 0.15 waves PV |
| Pointing accuracy on-sky                          | < 0.3" (3o)    | < 0.2" (3σ)     |
| Polarization extinction ratio (PER)               | > 98%          | > 99.5%         |
| Throughput                                        | > 95%          | 97.7%           |







VLT 4LGSF at First Light in 2016

Credit: ESO/ F. Kamphues



## **ELT LPS**



#### Laser Projection System (LPS), comprising

- Beam Conditioning and Diagnostics System (BCDS)
- Control Electronics and Drivers (LCER & LDER)
- > Electrical cabling
- > Optical Tube Assembly (OTA)
- > Cover Assembly
- Baseplate

#### Main characteristics

- > Suitable for laser power of up to 50W
- > FoV of 7' (half cone angle)
- > WFE < 65 nm rms
- Defocus across FoV < 120 nm PV</p>
- > Pointing resolution of 0,2" on sky
- > Absolute line of sight pointing error <10"
- Relative pointing error <0.25" (120s interval)</p>
- Size: 2.4 x 1.7 x 1.4 m (height x length x width)



## BCDS



#### Beam Conditioning and Diagnostics System (BCDS), comprising

- > Periscope (PER)
- > Beam Expander Unit (BEU), also used for focusing
- Beam Propagation Shutter (BPS)
- > Jitter Loop Mirror (JLM)
- > Use optical design from VLT
- Improved performance & reliability
- > Line Repleacable Units (LRUs) on kinematic mounts for easier maintenance
- > First system integration is ongoing
- > See also Proc. of SPIE Vol. 12185 121857K-1



Periscope



Beam Expander Unit



Beam Propagation Shutter

| Farameter                            |       |         |
|--------------------------------------|-------|---------|
| Central wavelength                   | nm    | 589.159 |
| Laser beam magnification             | -     | 3.6     |
| Optical throughput                   | %     | 94.8    |
| Degree of linear polarization        | %     | 95.2    |
| RMS wavefront error                  | nm    | 39.5    |
| Focus adjustment range               | λ ΡΤΥ | ± 5     |
| Focus adjustment resolution          | λ ΡΤΥ | 0.04    |
| Pointing control range               | µrad  | ± 1000  |
| Pointing control resolution          | µrad  | 0.08    |
| Pointing control settling time (10%) | ms    | 0.48    |
| Beam position stability (combined)   | μm    | ± 30    |
| Beam pointing stability (combined)   | µrad  | ± 15    |

## **ELECTRONICS**

### DEMCON \_\_\_\_\_\_\_ for life \_\_\_\_\_

#### Control Electronics

- > LPS Control Electronics Rack (LCER)
- > LPS Driver Electronics Rack (LDER)
- Remote BCDS Cabinet (RBC)
- Remote OTA Cabinet (ROC)
- Beckhoff based design
- Compatible with ESO control software (license will be granted by ESO for use at other observatories)
- > First system fully assembled and tested
- Verification Testing in environmental chamber successfully completed



LDER and LCER testing at Demcon

## ΟΤΑ





L2 s/n 03 acceptance test results at Optimax

OTA optical design

#### > OTA, consisting of:

- > Quarter Wave Plate (QWP
- > L1: negative lens
- > FSM: Field Selector Mechanism with flat steering mirror
- L2: 380 mm NBK7 asphere (manufactured by Optimax), bonded in Titanium mount
- > Steel tube
- Invar metering rods



L2 metrology at TNO

## ΟΤΑ



#### > Field Selector Mechanism (FSM)

- Large stroke tip/tilt mechanism (8.9 mrad)
- Enhanced on-sky pointing range w.r.t. VLT (from 4.8 arcmin to 7.0 arcmin)
- > <0.2 arcsec on-sky pointing accuracy
- In-house design by TNO (IP owned by TNO)
- > See also Proc. of SPIE Vol. 8125 812503-1



Actuator assembly



Actuator side of FSM



Fully Assembled FSM

## **FSM VERIFICATION TESTING**

-0.05

n

5

10

#### Static and fieldsteering

- Max field steering velocity = 2"/s
- > RPE < 0.25" for 2min



15

Time [s]

20

25

30

35

#### Resolution

Resolution <0.2"</p>

## **FSM VERIFICATION TESTING**

#### Step response

- > 0.8µm -> on sky angle 1.2arcsec
- Speed = 25arcsec/s = slewing speed
- Rise Time = 80ms (< 120ms)</p>
- Max Overshoot = 2.6% (< 10%)</p>
- Settling time 10% = 130 (< 200ms)</p>
- Settling time 5% = 155 (< 250ms)</p>

#### Next

Calibrate absolute angle of FSM



DEMCON \_\_\_\_\_\_ innovation for life \_\_\_\_\_

# THANK YOU FOR YOUR ATTENTION

